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1. Introduction

1.1. The purpose of this paper is to prove a rather unexpected new finiteness result for polarized integral
variations of Hodge structure, containing the theorem of Cattani, Deligne, and Kaplan for the locus of
Hodge classes [CDK95] as a special case. Instead of integral Hodge classes, we consider integral classes that
are “self-dual”, meaning that they are preserved by the action of the Weil operator; the motivation for this
comes from considerations in theoretical physics. Analyzing such classes using the methods in [CDK95]
becomes rather complicated, so our main tool is going to be the definability of period mappings in the
o-minimal structure Ran,exp, recently proved by Bakker, Klingler, and Tsimerman [BKT20]. This transforms
the problem into a pleasant set of exercises about certain algebraic groups.

1.2. We begin by describing a toy case of the problem, to set up the notation. Suppose that H is a polarized
integral Hodge structure of even weight 2k. We denote by

H
C
=H

Z
⊗
Z
C =

⊕
p+q=2k

Hp,q

the Hodge decomposition, and by Q : H
Z
⊗
Z
H

Z
→Z the symmetric bilinear form giving the polarization.

If we define the Weil operator by the formula

Cv = ip−qv for v ∈Hp,q,

then C ∈ End(H
R
) and C2 = id, and the expression

⟨−,−⟩ : H
R
⊗
R
H

R
→R, ⟨v,w⟩ =Q(v,Cw),

puts a positive definite inner product on H
R
=H

Z
⊗
Z
R. We usually write the resulting Hodge norm simply

as ∥v∥2 = ⟨v,v⟩.
We shall be interested in integral vectors v ∈H

Z
with the property that Cv = v. Since C2 = id, any vector

v ∈H
R
can of course be decomposed uniquely as

v = v+ + v− with Cv+ = v+ and Cv− = −v−;

concretely, v+ is the sum of all the “even” components in the Hodge decomposition of v, and v− the sum of
all the “odd” ones. By analogy with the action of the Hodge ∗-operator on the cohomology of four-manifolds,
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we may call v+ and v− the self-dual respectively anti-self-dual part of v. We say that an integral class is
self-dual if v = v+; note that Hodge classes (in H

Z
∩Hk,k ) are obviously self-dual. With this notation, we

have

∥v∥2 = ∥v+∥2 + ∥v−∥2 ≥ ∥v+∥2 − ∥v−∥2 =Q(v,v),

with equality exactly when Cv = v. Among integral vectors with a fixed value of Q(v,v), those with Cv = v
therefore have the smallest possible Hodge norm ∥v∥2. In this setting, we have the following completely
trivial finiteness result: the set

H+
q =

{
v ∈H

Z

∣∣∣ Cv = v and Q(v,v) = q
}

of self-dual integral vectors with a given self-intersection number q ≥ 1 is finite. Our main theorem is a
generalization of this fact to arbitrary polarized integral variations of Hodge structure of even weight.

1.3. We now turn to the main result. Let X be a nonsingular complex algebraic variety, not necessarily
complete, and let H be a polarized integral variation of Hodge structure on X, of even weight 2k. Let
p : E→ X be the underlying complex vector bundle, whose sheaf of holomorphic sections is isomorphic
to OX ⊗ZHZ

; here H
Z
denotes the underlying local system of free Z-modules. At each point x ∈ X, the

complex vector space Ex = p−1(x) is equipped with a polarized integral Hodge structure of weight 2k; the
set of integral vectors coincides with the stalk H

Z,x. We denote by Cx ∈ End(Ex) the Weil operator, and by
Qx the polarization; it is the stalk of the pairing Q : H

Z
⊗
Z
H

Z
→ZX that defines the polarization on H.

We shall think of the points of E as pairs (x,v), where x ∈ X and v ∈ Ex.
Recall that E is actually an algebraic vector bundle [Del70]; the algebraic structure is uniquely determined

by H. We shall give both E and X the Ran,exp-definable structure extending their algebraic structure; then
the projection p : E→ X becomes a morphism of definable spaces. Our main result is that the set of all
self-dual integral classes with fixed self-intersection number is a definable subspace of E.

Theorem 1.1. Let H be a polarized integral variation of Hodge structure of even weight on a nonsingular complex
algebraic variety X. For each q ≥ 1, the set{

(x,v) ∈ E
∣∣∣ v ∈ Ex is integral, Cxv = v, and Qx(v,v) = q }

is a definable, closed, real-analytic subspace of E, and the restriction of p : E→ X to this set is proper with finite
fibers.

1.4. By analogy with the theorem of Cattani, Deligne, and Kaplan, it is a natural to ask whether the locus of
self-dual classes is actually real (semi-)algebraic, meaning actually definable in the much smaller structure
Ralg. Simple examples in dimension one show that semi-algebraic is the best one can hope for in general.
We do not know the answer to this question.

1.5. Several useful variants of the main result can be obtained by tensoring with certain auxiliary Hodge
structures. The first one is the analogue of Theorem 1.1 for integral classes that are anti-self-dual.

Corollary 1.2. Let H be a polarized integral variation of Hodge structure of even weight on a nonsingular complex
algebraic variety X. For each q ≥ 1, the set{

(x,v) ∈ E
∣∣∣ v ∈ Ex is integral, Cxv = −v, and Qx(v,v) = −q }

is a definable, closed, real-analytic subspace of E, and the restriction of p : E→ X to this set is proper with finite
fibers.

The second one is a generalization to polarized integral variations of Hodge structure of arbitrary weight,
where we now consider pairs of integral classes that are related by the Weil operator.
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Corollary 1.3. Let H be a polarized integral variation of Hodge structure on a nonsingular complex algebraic
variety X. For each q ≥ 1, the set{

(x,v,w) ∈ E ×X E
∣∣∣ v,w ∈ Ex are integral, v = Cxw, and Qx(v,w) = q }

is a definable, closed, real-analytic subspace of E ×X E, and the restriction of p : E ×X E→ X to this set is again
proper with finite fibers.

Note that when H is an integral Hodge structure of odd weight, the Weil operator C ∈ End(H
R
) satisfies

C2 = − id, and so its eigenvalues are the two complex numbers ±i. The condition v = Cw is equivalent to

C(v + iw) = i(v + iw),

which is saying that v + iw ∈H
Z
⊗
Z
Z[i] is an eigenvector of the Weil operator that is integral with respect

to the Gaussian integers Z[i].

1.6. Unlike in the case of Hodge classes, the locus of self-dual (or anti-self-dual) classes is in general not a
complex analytic subset of the vector bundle E, hence in particular not algebraic. The reason is that the
Weil operator Cx ∈ End(Ex) depends real analytically – but not complex analytically – on the point x ∈ X,
which means that Cxv = ±v is not a holomorphic condition. We intend to discuss both the local structure of
the locus of self-dual classes, and its more precise behavior near a divisor with normal crossing singularities,
in a future paper. Here we only give two examples to show what these loci can look like in practice.

1.7. Our first example concerns anti-self-dual classes on K3 surfaces; these show up naturally in Verbitsky’s
study of ergodic complex structures on hyperkähler manifolds [Ver15, Ver17].

Example 1.1. Let S be a (not necessarily algebraic) K3 surface and let Λ
Z
=H2(S,Z) together with the cup

product pairing. The period domain D parametrizing the Hodge structures of K3 surfaces is a complex
manifold of dimension 20; concretely, if H2,0(S) = Cσ , one has

D =
{
[σ ] ∈ PΛ

C
� P

21
∣∣∣Q(σ,σ ) = 0 and Q(σ, σ̄ ) < 0

}
.

The set of points where a given integral class v ∈Λ
Z
is anti-self-dual, of Hodge type (2,0) + (0,2), is easily

seen to be {
[σ ] ∈ P21

∣∣∣Q(σ, σ̄ )v =Q(v, σ̄ )σ +Q(v,σ )σ̄ )
}

This is a totally real submanifold of real dimension 20.

Using Ratner theory, Verbitsky shows that for any finite index subgroup Γ ⊂O(Λ
Z
), orbits Γ p of elements

p ∈Λ
Z
come in three flavors: closed orbits, dense orbits, and orbits whose closures are the Γ -orbit of an

anti-self-dual locus. The three behaviors correspond to the three possibilities rk((H2,0⊕H0,2)∩Λ
Z
) = 2,0,1,

respectively, for the Hodge structure associated to p. The same analysis holds more generally for the period
domain associated to the degree two cohomology of any (possibly singular) hyperkähler variety, and is
important for instance in the proof of the global Torelli theorem in the singular case [BL18].

1.8. Our second example is self-dual classes in certain nilpotent orbits. This is less geometric, but provides
us with a large family of examples. For the general theory, see [CKS86, §3] and the survey paper [CK89, §3]
by Cattani and Kaplan.

Example 1.2. Let H
Z
be a free Z-module of finite rank, and let Q : H

Z
⊗
Z
H

Z
→ Z be a nondegenerate

symmetric bilinear pairing. Suppose that we have a representation ρ : sl2(C)→ End(H
C
) of the Lie algebra

sl2(C), such that

N = ρ
(
0 1
0 0

)
∈ End(H

Q
) and Y = ρ

(
1 0
0 −1

)
∈ End(H

R
)
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satisfy Q(Nv,w) +Q(v,Nw) = 0 and Q(Y v,w) =Q(v,Yw) for all v,w ∈H
C
, and such that eN ∈ End(H

Z
).

Let W•(N ) denote the weight filtration of the nilpotent operator N . Let F be a decreasing filtration of H
C

such that

Y (Fp) ⊆ Fp and N (Fp) ⊆ Fp−1 for all p ∈Z.

Further assume that F♯ = eiNF is the Hodge filtration of an integral Hodge structure of even weight on H
Z
,

polarized by the pairing Q. Then it is known [CK89, Proposition 3.9] that the nilpotent orbit

H→D, z 7→ ezNF,

descends to a polarized integral variation of Hodge structure on ∆∗, whose monodromy transformation is
T = eN . Let us describe the locus of points in H where a given integral class v ∈ H

Z
is self-dual. Write

z = x+ iy. Let C♯ ∈ End(HR
) denote the Weil operator of the Hodge structure F♯. From the identity

ezNF = exN eiyNF = exN e−
1
2 logy Y eiN e

1
2 logy Y F = exN e−

1
2 logy Y F♯

and the fact that both exponential factors are elements of the real Lie group G(R), it follows that the Weil
operator of the Hodge structure ezNF is

exN e−
1
2 logy YC♯e

1
2 logy Y e−xN .

The set of points z ∈ H where our integral class v ∈ H
Z
is self-dual is therefore defined by the simple

equation

(1.3) C♯

(
e
1
2 logy Y e−xNv

)
= e

1
2 logy Y e−xNv.

At each point, the Hodge norm of v is of course equal to Q(v,v). If the set contains points with y = Imz
arbitrarily large, then necessarily v ∈W0(N ). Since

W0(N ) =
⊕
ℓ≤0

Eℓ(Y ),

we have a decomposition v = v0 + v−1 + · · · , where Y vℓ = ℓvℓ . Now the Weil operator C♯ interchanges
the two weight spaces E±ℓ(Y ), because YC♯ +C♯Y = 0, for example by [CKS86, formulas (6.35)]. Since

e
1
2 logy Y e−xNv ∈W0(N ), the identity in (1.3) implies that e

1
2 logy Y e−xNv ∈ E0(Y ), and hence that

v = exN e−
1
2 logy Y v0 = e

xNv0.

Now there are two possibilities. Either Nv = 0 and v = v0, or Nv , 0. In the first case, v is self-dual at
every point z ∈H; in the second case, the equation v = exNv0 uniquely determines the value of x ∈R, and
v is self-dual along the vertical ray Rez = x. The connected components of the locus of self-dual classes are
therefore of two different kinds: one kind projects isomorphically to the entire punctured disk ∆∗; the other
to a single angular ray in ∆∗.

2. Background on definability

2.1. The theory of o-minimal structures provides a precise notion of tameness for subsets of euclidean space
and functions on them. It is flexible enough to allow for complicated constructions but restrictive enough to
imply strong finiteness properties. A general reference for this section is [vdD98].
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2.2. To formalize this notion, we first introduce a way to describe collections of subsets of Rn which are
closed under a variety of natural operations.

Definition 2.1. A structure S is a collection (Sn)n∈N where each Sn is a set of subsets of Rn satisfying the
following conditions:

(1) Each Sn is closed under finite intersections, unions, and complements;
(2) The collection (Sn)n∈N is closed under finite Cartesian products and coordinate projections;
(3) For every polynomial P ∈R[x1, . . . ,xn], the zero set

(P = 0) := {x ∈Rn | P (x) = 0} ⊂R
n

is an element of Sn.

We refer to an element U ∈ Sn as an S-definable subset U ⊂ R
n. For U ∈ Sn, and V ∈ Sm, we say a map

f :U → V of S-definable sets is S-definable if the graph is as a subset of Rm+n. When the structure S is
clear from context, we will often just refer to “definable" sets and functions.

2.3. For each n taking Sn to be the Boolean algebra generated by real algebraic subsets (P = 0) of Rn, the
resulting S is not a structure. For example, the algebraic set (x2 − y = 0) ⊂R

2 projects to the semialgebraic
set (y ≥ 0) ⊂R. On the other hand, if we take Sn to be the Boolean algebra generated by real semialgebraic
subsets (P ≥ 0) of Rn, then by the Tarski–Seidenberg theorem the resulting S =Ralg is a structure.

Note. Tarski–Seidenberg is usually phrased as quantifier elimination for the real ordered field. Indeed, the
above axioms for a structure say that definable sets are closed under first order formulas, as intersections,
unions, and complements correspond to the logical operators “and", “or", and “not", while the projection
axiom corresponds to universal and existential quantifiers. For this reason, structures have been studied
extensively in model theory.

2.4. Surprisingly, a good notion of tame structure can be achieved by simply restricting the definable subsets
of the real line.

Definition 2.2. A structure S is said to be o-minimal if S1 = (Ralg)1—that is, if the S-definable subsets of
the real line are exactly finite unions of intervals.

Sets and functions which are definable in an o-minimal structure have very nice properties, including the
following. Here we fix an o-minimal structure S and by “definable" we mean “S-definable."

• For any definable function f :U → V with finite fibers, the fiber size |f −1(v)| is a definable function.
In particular, it is uniformly bounded, and for any n the set

{v ∈ V | |f −1(v)| = n}

is definable.
• Any definable subset U ⊂ R

n admits a definable triangulation: it is definably homeomorphic to a
finite simplicial complex.
• Any definable subset U ⊂ R

n has a well-defined dimension, namely, the dimension as a simplicial
complex for any definable triangulation. Moreover, for any definable map f :U → V and any n the
set

{v ∈ V | dimf −1(v) = n}
is definable.
• For any k and any definable function f : U → R, there is a definable triangulation of U such that
f is Ck on each simplex. As a consequence, any definable U ⊂ R

n can be partitioned into finitely
many Ck-submanifolds of Rn.
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2.5. We give some examples of o-miminal structures. As discussed above, the structure Ralg is o-minimal;
in fact, it is the smallest o-minimal structure.

Given a collection Σ = (Σn)n∈N of subsets of Rn for each n, we say the structure generated by Σ is the
smallest structure in which each set in each Σn is definable. It is the structure whose definable sets are
given by first order formulas involving real polynomials, inequalities, and the sets in Σ. The structure
Rexp generated by the graph of the real exponential exp : R → R is o-minimal by a result of Wilkie
[Wil96]. However, the function sin :R→R is not definable in any o-minimal structure, as the definable set
πZ = sin−1(0) is both discrete and infinite.

2.6. To get a much larger o-minimal structure, let Ran be the structure generated by the graphs of all
restrictions f |B(R), where f : B(R′)→R is a real analytic functions on a finite radius R′ <∞ open euclidean
ball (centered at the origin) and B(R) ⊂ B(R′) is a ball of strictly smaller radius R < R′ . Via the embedding
R
n ⊂RP

n, this is equivalent to the structure of subsets of Rn that are subanalytic in RP
n. As observed by

van-den-Dries [vdD98], Gabrielov’s theorem of the complement implies that Ran is o-minimal. Note that
while the sine function is not Ran-definable, its restriction to any finite interval is.

Finally, let Ran,exp be the structure generated by Ran and Rexp. Then Ran,exp is o-minimal by a result of
van-den-Dries–Miller [vdDM96]. Most of the applications to algebraic geometry currently use the structure
Ran,exp, and this will be the default structure we work with.

2.7. For applications, we typically wish to discuss definability for manifolds that don’t arise as subsets of
R
n, and for this we need an appropriate notion of definable atlas.

Definition 2.3. Let M be a topological space and S a structure.

• A (S-)definable atlas {(Ui ,φi)} consists of a finite open covering Ui of M, and homeomorphisms
φi :Ui → Vi ⊂R

ni such that
(1) The Vi and the pairwise intersections Vij := φi(Ui ∩Uj ) are definable sets;
(2) The transition functions φij := φj ◦φ−1i : Vij → Vji are definable.

• If M is equipped with a definable atlas {(Ui ,φi)}, we say a subset Z ⊂ M is definable if each
φi(Ui ∩Z) is.
• If M,M ′ are equipped with definable atlases {(Ui ,φi)}, {(U ′i′ ,φ

′
i′ )}, a map f :M→M ′ is definable if

each f −1(U ′i′ ) ⊂M is definable and moreover for each i, i′ the composition

(f ◦φ−1i )−1(U ′i′ )
φ−1i−−−→ f −1(U ′i′ )

f
−→U ′i′

φ′i′−−→ V ′i′

is (S-)definable.
• We say two atlases {(Ui ,φi)}, {(U ′i′ ,φ

′
i′ )} on M are equivalent if the identity map is definable with

respect to {(Ui ,φi)} on the source and {(U ′i′ ,φ
′
i′ )} on the target.

• A (S-)definable topological space is a topological space M equipped with an equivalence class of
definable atlases. A morphism of (S-)definable topological spaces is a continuous map f :M→M ′

which is definable for any choice of atlases in the equivalence classes on the source and target.
• We likewise define (S-)definable manifolds (resp. (S-)definable complex manifolds) by in addition
requiring that the charts map to open subsets of Rn (resp. Cn) and that the transition functions are
smooth (resp. holomorphic). Here we make sense of definability in C

n via the identification C
n �R

2n

by taking real and imaginary parts.

Example 2.1. Any complex algebraic variety X naturally has the structure of an S-definable topological space
for any structure S . It admits a finite covering Ui by affine algebraic varieties, each of which is a complex
(hence real) algebraic subset of some C

ni , and the transition functions are given by algebraic functions.
Likewise, any nonsingular complex algebraic variety has a natural structure as an S-definable complex
manifold. We denote this definable complex manifold by Xdef.
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2.8. One common method of producing interesting definable topological spaces is by taking quotients of
other definable topological spaces by definable group actions.

Definition 2.4. Let X be a locally compact Hausdorff definable topological space and Γ a group acting on
X by definable homeomorphisms. A definable fundamental set for the action of Γ on X is an open definable
subset F ⊆ X such that

(1) Γ ·F = X,
(2) the set {γ ∈ Γ |γ ·F ∩F , ∅} is finite.

We shall require the following proposition:

Proposition 2.5 (cf. [BBKT20, Proposition 2.3]). If F is a definable fundamental set for the action of Γ on X,
then there exists a unique definable structure on Γ \X such that the canonical map F→ Γ \X is definable.

3. Background on Siegel sets

3.1. In this section, we give some background on Siegel sets for symmetric spaces of the type that appear in
the study of period mappings. We begin by recalling the definition of a Siegel set; a good general discussion
is [BJ06, § 2]. Let G be a reductive Q-algebraic group. The set of real points G(R) is a real Lie group,
and we fix a maximal compact subgroup K ⊆ G(R). By [BS73, Proposition 1.6], this determines a Cartan
involution θ of the R-algebraic group G

R
, whose fixed point set is K . Let P ⊆ G be a minimal parabolic

Q-subgroup, and let U ⊆ P be its unipotent radical. The dimension of any maximal split Q-torus in P is
called the Q-rank of G; we shall denote it by rkG. The Levi quotient P /U is isomorphic to the product of a
split Q-torus of dimension rkG and a maximal anisotropic Q-subgroup. According to [BS73, Corollary 1.9],
there is a unique Levi subgroup

L = S ×M ⊆ P
R

that maps isomorphically to the Levi quotient P
R
/U

R
and is stable under the Cartan involution θ. In

particular, S is a split R-torus of dimension rkG that is conjugate over G
R
to a maximal Q-split torus of

G, such that θ(g) = g−1 for every g ∈ S(R); compare [Orr18, Lemma 2.1]. Moreover, M is contained in the
centralizer of S in G

R
. The adjoint action of S on the Lie algebra of P

R
determines a root system, and we

write ∆ for the set of simple roots.
We use the definition of Siegel sets in [Orr18, § 2.2]; for a discussion of how it relates to the original

definition in [Bor19, § 12], see [Orr18, § 2.3]. For our purposes, a Siegel set in G(R), with respect to the
maximal compact subgroup K and the minimal parabolic Q-subgroup P , is any set of the form

S(Ω, t) =Ω ·At ·K ⊆ G(R),

where Ω ⊆U (R)M(R)+ is a compact set, t > 0 is a positive real number, and

At =
{
g ∈ S(R)+

∣∣∣ χ(g) ≥ t for all simple roots χ ∈ ∆
}
.

We say that a Siegel set is subalgebraic if Ω ⊆ U (R)M(R)+ is subalgebraic, meaning definable in the
o-minimal structure Ralg.

Note. More generally, it is known that any set of the form S(Ω, t) with Ω ⊆ P (R) compact is contained in a
Siegel set in the above sense [Orr18, § 2.3].

3.2. We are only going to be interested in Siegel sets with respect to a fixed maximal compact subgroup. To
emphasize this, we usually talk about Siegel sets for K , meaning that the maximal compact subgroup K in
the definition is fixed, whereas the minimal parabolic Q-subgroup P is allowed to be arbitrary. For later
use, let us briefly recall how Siegel sets for different minimal parabolic Q-subgroups are related to each
other. Let K ⊆ G(R) be a fixed maximal compact subgroup, and P ⊆ G be a minimal parabolic Q-subgroup.



Finiteness for self-dual classes in integral variations of Hodge structure 9Finiteness for self-dual classes in integral variations of Hodge structure 9

Since all minimal parabolic Q-subgroups are conjugate to each other, any other choice P ′ ⊆ G has the form
P ′ = gP g−1 for a suitable element g ∈ G(Q). Write g = kp with k ∈ K and p ∈ P (R)+, so that

P ′(R) = gP (R)g−1 = kP (R)k−1.

Now suppose that S ⊆ G(R) is a Siegel set for K and P . By [Bor19, § 12.4], the translate pS is contained in
a larger Siegel set ΩAtK ⊆ G(R) with respect to K and P ; here Ω ⊆ U (R)M(R)+ is compact and t > 0.
Consequently,

gS ⊆ kΩAtK = kΩk−1 · kAtk−1 ·K,

and the right-hand side is now a Siegel set with respect to K and P ′ = gP g−1. This shows that any Siegel
set for K is contained in a G(Q)-translate of a Siegel set with respect to K and a fixed minimal parabolic
Q-subgroup P .

3.3. Now we specialize to the case that is of interest in the study of period mappings. The general setting
is as follows. Let H

Q
be a finite-dimensional Q-vector space, of dimension n = dimH

Q
, equipped with a

nondegenerate symmetric bilinear form

Q : H
Q
⊗
Q
H

Q
→Q.

Further suppose that there is an endomorphism C ∈ End(H
R
) of the real vector space H

R
=H

Q
⊗
Q
R that

satisfies C2 = id, such that

⟨−,−⟩C : HR
⊗
R
H

R
→R, ⟨v,w⟩ =Q(v,Cw),

is a positive definite inner product on H
R
. By analogy with the case of Hodge structures, we shall say that C

is a Weil operator for the pair (H
Q
,Q).

3.4. The orthogonal group G = O(H
Q
,Q) is a reductive Q-algebraic group, in general not connected,

whose set of real points is the real Lie group

G(R) =
{
g ∈ Aut(H

R
)
∣∣∣Q(gv,gw) =Q(v,w) for all v,w ∈H

R

}
.

Evidently, C ∈ G(R). It is easy to see that an element g ∈ G(R) preserves the inner product ⟨−,−⟩C if and
only if gC = Cg ; therefore the subgroup

K =
{
g ∈ G(R)

∣∣∣ gC = Cg
}

is compact. It is proved in [Sch73, (8.4)] that K is actually a maximal compact subgroup of G(R), and that
the associated Cartan involution is given by the simple formula

θ : G(R)→ G(R), θ(g) = CgC.

The following result is well-known.

Lemma 3.1. The symmetric space G(R)/K parametrizes Weil operators for (H
Q
,Q), with the coset gK correspond-

ing to the Weil operator gCg−1 ∈ End(H
R
).

Proof. All elements in the coset gK give us the same operator gCg−1 ∈ End(H
R
), which is a Weil operator

for the pair (H
Q
,Q) because

Q(v,gCg−1w) =Q(g−1v,Cg−1w) = ⟨g−1v,g−1w⟩C

is positive definite. Conversely, suppose that C′ ∈ End(H
R
) is another Weil operator for (H

Q
,Q). Let

n = dimH
R
. Since Q has a fixed signature, we have

dimE1(C
′) = dimE1(C) = p and dimE−1(C

′) = dimE−1(C) = n− p.
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Pick a basis e1, . . . , en ∈HR
that is orthonormal for the inner product ⟨−,−⟩C , in such a way that e1, . . . , ep ∈

E1(C) and ep+1, . . . , en ∈ E−1(C). Pick a second basis e′1, . . . , e
′
n ∈HR

that is similarly adapted to ⟨−,−⟩C′ and
C′ , and let g ∈ Aut(H

R
) be the unique automorphism such that gei = e′i for i = 1, . . . ,n. Then

Q(ei ,Cej ) =Q(e′i ,C
′e′j ) =Q(gei ,C

′gej ) =Q(gei , gCej ),

and therefore g ∈ G(R) by the nondegeneracy of Q. By construction, C′g = gC, which makes C′ = gCg−1

equal to the image of the coset gK . □

3.5. Now let us turn our attention to Siegel sets in G(R). The Q-rank of G and the collection of minimal
parabolic Q-subgroups P ⊆ G can be described concretely as follows. Let r ≥ 0 be the Witt rank of Q,
meaning the dimension of a maximal Q-isotropic subspace of H

Q
. Let

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr

be a maximal flag of isotropic subspaces, with dimVi = i. As explained in [Bor19, § 11.16], the stabilizer P of
this flag is a minimal parabolic Q-subgroup of G, and every minimal parabolic Q-subgroup arises in this
way; moreover, the Q-rank of G is equal to r . Since Q is nondegenerate, it is possible to choose vectors
v′1, . . . , v

′
r ∈HQ

with the property that

Q(vi ,v
′
j ) = [i = j] =

1 if i = j,

0 otherwise.

The 2r-dimensional subspace spanned by v1, . . . , vr ,v
′
1, . . . , v

′
r is uniquely determined by Vr ; so is its

orthogonal complement with respect to Q. Let U ⊆ P denote the unipotent radical; concretely, g ∈U (Q) iff
gvi − vi ∈ Vi−1 for i = 1, . . . , r .

3.6. The unique Levi subgroup S ×M ⊆ P
R
that is stable under the Cartan involution can be described

concretely as follows. Using the Gram–Schmidt process, construct an orthonormal basis e1, . . . , er ∈ Vr
relative to the inner product ⟨−,−⟩C , in such a way that

Vi ⊗QR =Re1 ⊕ · · · ⊕Rei

for i = 1, . . . , r . Since Vr is isotropic, the vectors e1, . . . , er ,Cer , . . . ,Ce1 are still orthonormal, and we get an
embedding

s : Gm,R × · · · ×Gm,R ↪→ P
R

by letting s(λ1, . . . ,λr ) act as multiplication by λi on the vector ei , as multiplication by λ−1i on the vector Cei ,
and as the identity on the orthogonal complement of e1, . . . , er ,Cer , . . . ,Ce1. The image of this embedding is
the desired R-torus S . The other factor of the Levi subgroup S ×M has as its set of real points

M(R) =
{
g ∈ G(R)

∣∣∣ gei = CgCei = ei for all i = 1, . . . , r
}
,

which is clearly stable under the Cartan involution θ(g) = CgC. Note in particular that M(R) preserves the
orthogonal complement of e1, . . . , er ,Cer . . . ,Ce1.

3.7. We also need to know the set of simple roots ∆ for the action of S on the Lie algebra of P
R
. These are

computed in [Bor19, § 11.16]. There are two cases, depending on the value of the integer n− 2r ≥ 0:

(1) If n = 2r, the simple roots are λ1/λ2, . . . ,λr−1/λr and λr−1λr ; this is the case where (H
Q
,Q) is split,

hence isomorphic to a sum of hyperbolic planes.
(2) If n > 2r, the simple roots are λ1/λ2, . . . ,λr−1/λr and λr ; this is the case where (H

Q
,Q) has a

nontrivial anisotropic summand.
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3.8. As in the case of the general linear group, Siegel sets in G(R) are closely related to the reduction
theory of positive definite quadratic forms. We are going to make this idea precise by comparing Siegel
sets for the two Q-algebraic groups G =O(H

Q
,Q) and G̃ = GL(H

Q
). In G̃, we have the maximal compact

subgroup
K̃ =

{
g ∈ G̃(R)

∣∣∣ ⟨g−1v,g−1w⟩C = ⟨v,w⟩C for v,w ∈H
R

}
.

The associated Cartan involution is g 7→ C(gt)−1C, where gt means the adjoint of g with respect to the
nondegenerate pairing Q. Clearly, K̃ ∩G(R) = K . The relevant minimal parabolic Q-subgroup P̃ ⊆ G̃ is
obtained as follows. Complete the given flag V1 ⊂ · · · ⊂ Vr of isotropic subspaces to a maximal flag

{0} ⊂ V1 ⊂ · · · ⊂ Vr ⊂ · · · ⊂ Vn−r ⊂ Vn−r+1 ⊂ · · · ⊂ Vn =HQ

by defining Vn−r = V ⊥r and Vn−r+i = V ⊥r ⊕Qv′r ⊕ · · · ⊕Qv′r+1−i for i = 1, . . . , r, and then filling in the n− 2r
steps in between Vr and V

⊥
r . Let P̃ ⊆ G̃ be the stabilizer of this maximal flag, and let Ũ ⊆ P̃ be its unipotent

radical; then
P̃ ∩G ⊆ P and Ũ ∩G =U.

Using the Gram-Schmidt process, construct an orthonormal basis e1, . . . , en ∈ HR
with the property that

Vi ⊗QR =Re1 ⊕ · · · ⊕Rei ; a short calculation shows that

en−r+1 = Cer , en−r+2 = Cer−1, . . . , en = Ce1.

In this case, the Levi subgroup S̃ × M̃ reduces to the split R-torus S̃ ⊆ P̃
R
consisting of all diagonal matrices

diag(λ1, . . . ,λn) with respect to the basis e1, . . . , en; with a little bit of work, one can show that S̃ ∩G(R) = S .
The simple roots are computed in [Bor19, § 1.14] to be λ1/λ2, . . . ,λn−1/λn.

3.9. We can now compare Siegel sets in G(R) = O(H
R
,Q) and G̃(R) = GL(H

R
). The result is a more

precise version of a general theorem by Orr [Orr18, Theorem 1.2], with a small correction contained in
[OS21].

Proposition 3.2. Any Siegel set in G(R) for the maximal compact subgroup K is contained in at most two
G(Q)-translates of a Siegel set in G̃(R) (for K̃).

Proof. We need to consider the two cases n > 2r and n = 2r separately. Let us first deal with the easier case
n > 2r (where H

Q
has a nontrivial anisotropic summand). Without loss of generality, we can assume that the

Siegel set in G(R) has the form
ΩU ·ΩM ·At ·K,

where ΩU ⊆U (R) and ΩM ⊆M(R)+ are compact subsets and t > 0 is a real number. From the description
of the simple roots above, we know that

At =
{
s(λ1, . . . ,λr )

∣∣∣ λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t, and λr ≥ t }.
It will be convenient to write elements of G̃(R) as matrices with respect to our fixed orthonormal basis
e1, . . . , en ∈HR

. With this convention, the set At consists of all diagonal matrices of the form

diag(λ1, . . . ,λr ,1, . . . ,1,λ
−1
r , . . . ,λ

−1
1 )

with λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t and λr ≥ t. The crucial point is that every such matrix belongs to
Ãt ⊆ S̃(R), because the number of 1’s in the middle is n− 2r ≥ 1. Consider an arbitrary element

u ·m · a · k ∈ΩU ·ΩM ·At ·K.

As a matrix, u is upper triangular with all diagonal elements equal to 1, and m is block-diagonal, with the
first r and last r diagonal entries equal to 1; in particular, we have ma = am. Since m ∈ΩM varies in a
compact set, the components of the polar decomposition

m = p̃m · k̃m ∈ P̃ (R) · K̃
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also belong to compact subsets of P̃ (R) and K̃ ; moreover, p̃m is again block-diagonal, and therefore
ap̃m = p̃ma. This gives

u ·m · a · k = up̃m · a · k̃mk ∈ P̃ (R) · Ãt · K̃.
The first factor lies in a compact subset of P̃ (R), and we have already noted that a ∈ Ãt ; consequently, our
Siegel set is contained in a Siegel set in G̃(R).

The split case n = 2r is less straightforward. Here the subgroup M is trivial, and therefore our Siegel set
takes the form

S(Ω, t) =Ω ·At ·K ⊆ G(R),

where Ω ⊆ U (R) is compact. The simple roots for the action of S on the Lie algebra of P
R

are now
λ1/λ2, . . . ,λr−1/λr , and λr−1λr ; with respect to our orthonormal basis e1, . . . , e2r ∈HR

, the set At consists
of all diagonal matrices of the form 

λ1
. . .

λr
λ−1r

. . .

λ−11


with λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t, and λr−1λr ≥ t. As long as λr ≥ 1, this matrix belongs to Ãmin(1,t); but if
λr ≤ 1, this only holds after we swap λr and λ

−1
r , which amounts to conjugating by the permutation matrix

σ =



1
. . .

0 1
1 0

. . .

1


∈ K̃.

In a nutshell, this is the reason why we need two translates of a Siegel set. Getting down to the details,
consider again an arbitrary element

u · a · k ∈Ω ·At ·K.
If a ∈ At is such that λr ≥ 1, then a ∈ Ãmin(1,t), and we can argue as before to show that this part of S(Ω, t)
is contained in a Siegel set in G̃(R). Let us therefore suppose that λr ≤ 1. We can rewrite our element in the
form

u · a · k = σ ·uσ · aσ · σk ∈ σ ·uσ · Ãmin(1,t) · K̃,
where aσ = σaσ etc. Now the crucial point is that uσ ∈ Ũ (R), which puts this part of S(Ω, t) into the
translate by σ of a Siegel set in G̃(R).

Here is the reason why uσ = σuσ ∈ Ũ (R). The matrix for u is upper triangular with all diagonal entries
equal to 1; in particular, there is some x ∈R such that

uer+1 ≡ er+1 + xer mod ⟨e1, . . . , er−1⟩.

Because of the special shape of σ , having uσ ∈ Ũ (R) is now equivalent to

x = ⟨uer+1, er⟩C =Q(uer+1,Cer ) =Q(uer+1, er+1) = 0.

As u ∈ G(R), we have Q(uer+1, er+1) =Q(u−1er+1, er+1), and therefore

⟨uer+1, er⟩C = ⟨u−1er+1, er⟩C .
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From the relation uer+1 ≡ er+1 + xer , we deduce that

u−1er+1 ≡ er+1 − xer mod ⟨e1, . . . , er−1⟩,

and after taking the inner product with er , we get x = −x or x = 0.
It remains to argue that the translate is actually by an element of G(Q); note that σ ∈ K̃ is not rational

in general. To that end, we define an involution g ∈ G(Q) by requiring that gvi = vi and gv′i = v
′
i for

i = 1, . . . , r − 1, and gvr = v′r and gv′r = vr . Then it is easy to check that the matrix for gσ in the basis
e1, . . . , e2r is upper triangular, which means that gσ ∈ P̃ (R). Using [Bor19, § 12.4], it follows that the translate
by σ of a Siegel set in G̃(R) with respect to K̃ and P̃ is contained in the translate by g of a bigger Siegel set
in G̃(R), which is enough for our purposes. □

3.10. Let us now relate Siegel sets in G(R) to reduction theory for quadratic forms. Following [Kli90,
Section I.2], we shall say that a positive definite inner product ⟨−,−⟩ on the vector space H

R
is t-reduced

relative to an ordered basis v1, . . . , vn ∈HQ
(where t > 0 is a real number) if the following three conditions

hold:

(a) For every 1 ≤ i ≤ n− 1, one has ∥vi∥2 ≤ t∥vi+1∥2.
(b) For every 1 ≤ i < j ≤ n, one has 2|⟨vi ,vj⟩| ≤ t∥vi∥2.
(c) The matrix of the quadratic form satisfies the inequality

n∏
i=1

∥vi∥2 ≤ t · c1(n)det
(
⟨vi ,vj⟩

)
i,j
,

where c1(n) the optimal constant in Minkowski’s inequality.

For a given basis v1, . . . , vn ∈HQ
and a given number t > 0, consider the set of elements g ∈GL(H

R
) such

that the inner product

(v,w) 7→ ⟨g−1v,g−1w⟩C =Q(g−1v,Cg−1w)

is t-reduced relative to the basis v1, . . . , vn. It is known that every Siegel set in GL(H
R
) for the maximal

compact subgroup K̃ is contained in a set of this type; conversely, every set of this type is contained in a
Siegel set (for K̃ ).

3.11. To simplify the discussion, let us denote by

S(v1, . . . , vn, t)

the set of elements g ∈ G(R) such that the inner product

(v,w) 7→ ⟨v,w⟩gCg−1 =Q(v,gCg−1w)

is t-reduced relative to a given basis v1, . . . , vn ∈ HQ
. Being defined by a collection of inequalities, this is

clearly a subalgebraic subset of G(R). It is easy to see that

gS(v1, . . . , vn, t) = S(gv1, . . . , gvn, t)

for any g ∈ G(Q), which means that the collection of these sets is stable under translation by elements
in G(Q). The following theorem gives a useful criterion for checking whether a given subset of G(R) is
contained in finitely many G(Q)-translates of a Siegel set for K .

Theorem 3.3. Any Siegel set in G(R) for the maximal compact subgroup K is contained in a finite union of sets
of the form S(v1, . . . , vn, t); conversely, any set of the form S(v1, . . . , vn, t) is contained in a finite union of Siegel
sets (for K).
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Proof. The first assertion follows immediately from Proposition 3.2 and the discussion above. To prove the
second assertion, observe that any set of the form S(v1, . . . , vn, t) is contained in a Siegel set in GL(H

R
) (for

K̃ ); moreover, the intersection of such a Siegel set with the subgroup G(R) is contained in finitely many
G(Q)-translates of a Siegel set in G(R) by Proposition 3.4 below. We then get the desired result by recalling
that any G(Q)-translate of a Siegel set for K is again a Siegel set for K (with a possibly different minimal
parabolic Q-subgroup). □

3.12. In this section, we prove a proposition concerning the intersection of a Siegel set with a reductive
subgroup. The result is similar to [BHC62, Lemma 7.5], except that we are working with Siegel sets for
Q-algebraic groups (instead of with Siegel domains for R-algebraic groups), and that we are making a
different set of assumptions about the subgroup. To simplify the notation, let G be an arbitrary reductive
Q-algebraic group, and H ⊆ G a reductive Q-algebraic subgroup. Further, let KG ⊆ G(R) and KH ⊆H(R)
be maximal compact subgroups such that KH = KG ∩H(R). Note that the Cartan involutions on G

R
and

H
R
are not necessarily compatible with each other.

Proposition 3.4. Suppose that every Siegel set in H(R) for the maximal compact subgroup KH is contained in
finitely many G(Q)-translates of a Siegel set in G(R) (for KG). Let SG ⊆ G(R) be any Siegel set for KG. Then
there is a Siegel set SH ⊆H(R) for KH , and a finite set F ⊆H(Q), such that

SG ∩H(R) ⊆ F ·SH .

Proof. This is an easy consequence of reduction theory, and all that is required is collecting some results from
[Bor19]. Let ΓG ⊆ G(Q) be an arithmetic subgroup; the intersection ΓH = ΓG ∩H(Q) is then an arithmetic
subgroup of H(Q). According to [Bor19, Theorem 15.5], there exists a Siegel set SH ⊆H(R) for the maximal
compact subgroup KH , and a finite set CH ⊆H(Q), such that

H(R) = ΓH ·CH ·SH .

Since the intersection SG∩H(R) is of course contained in ΓHCSH , it is therefore enough to prove finiteness
of the set

B =
{
γ ∈ ΓH

∣∣∣ SG intersects γCHSH
}
.

After enlarging SG, if necessary, our assumption about Siegel sets in H(R) implies that there is a finite set
A ⊆ G(Q) such that SH ⊆ ASG. Consequently, our set B ⊆ ΓH is contained in the larger set{

γ ∈ ΓG
∣∣∣ SG intersects γCHASG

}
,

which is finite because SG has the Siegel property [Bor19, Theorem 15.4].
It remains to justify our claim that SH ⊆ ASG. By assumption, SH is contained in many G(Q)-translates

of a Siegel set in G(R), but probably with respect to a different minimal parabolic Q-subgroup. After
translation by an element of G(Q), we can assume that the minimal parabolic Q-subgroup is the same as for
SG; and then we can enlarge SG and assume that the Siegel set in question is actually SG. This completes
the proof. □

3.13. Let us return to the setting considered in § 3.3, but add one additional piece of data. We still assume
that G = O(H

Q
,Q), and that we have a fixed Weil operator C ∈ End(H

R
) for which (v,w) 7→ ⟨v,w⟩C =

Q(v,Cw) is a positive definite inner product on the R-vector space H
R
. Let us now assume in addition that

we have a nonzero element a ∈H
Q
with the property that Ca = a. In particular,

Q(a,a) = ⟨a,a⟩C > 0.

The stabilizer of this vector is a reductive Q-subgroup Ga ⊆ G; concretely,

Ga(Q) =
{
g ∈ G(Q)

∣∣∣ ga = a }.
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We are interested in Weil operators C′ ∈ End(H
R
) with the property that C′a = a. The following result says

that all such Weil operators are conjugate to C by elements of the real group Ga(R).

Lemma 3.5. Let C′ ∈ End(H
R
) be a Weil operator for (H

Q
,Q). If C′a = a, then there is an element g ∈ Ga(R)

such that C′ = gCg−1.

Proof. The proof is similar to that of Lemma 3.1. We have

∥a∥2C′ =Q(a,a) = ∥a∥2C ,

because C′a = a = Ca. Let n = dimH
R
. Since Q has a fixed signature, we have

dimE1(C
′) = dimE1(C) = p and dimE−1(C

′) = dimE−1(C) = n− p.

The unit vector e1 = a/∥a∥C can be completed to a basis e1, . . . , en ∈HR
that is orthonormal for the inner

product ⟨−,−⟩C , in such a way that e1, . . . , ep ∈ E1(C) and ep+1, . . . , en ∈ E−1(C). Choose a second basis
e′1, . . . , e

′
n ∈ HR

with e′1 = a/∥a∥C′ that is similarly adapted to ⟨−,−⟩C′ and C′ , and let g ∈ Aut(H
R
) be the

unique automorphism such that gei = e′i for i = 1, . . . ,n. Then obviously ga = a. As in the proof of Lemma 3.1,
one shows that C′ = gCg−1 and g ∈ G(R), which then implies that g ∈ Ga(R) because ga = a. □

3.14. The orthogonal complement of a relative to Q is the subspace

H ′
Q
=

{
v ∈H

Q

∣∣∣Q(a,v) = 0
}
=

{
v ∈H

Q

∣∣∣ ⟨a,v⟩C = 0
}
.

Evidently, H
Q
=Qa⊕H ′

Q
. It is also easy to see that C(H ′

R
) ⊆H ′

R
; consequently, the restriction of C to H ′

Q

is a Weil operator for the pair (H ′
Q
,Q). We denote by

Ka =
{
g ∈ Ga(R)

∣∣∣ gC = Cg
}

the resulting maximal compact subgroup; note that Ka = K ∩Ga(R).

Proposition 3.6. Any Siegel set in Ga(R) for the maximal compact subgroup Ka is contained in finitely many
G(Q)-translates of a Siegel set in G(R) (for K).

Proof. The criterion in Theorem 3.3 reduces the problem to the following concrete statement: suppose that
g ∈ Ga(R) is an element with the property that

(v,w) 7→ ⟨v,w⟩gCg−1 =Q(v,gCg−1w)

is t-reduced relative to an ordered basis v1, . . . , vn−1 ∈H ′Q; then it is possible to add the vector a to the basis
(in one of the n possible places) and still keep the inner product t-reduced. This is completely elementary.
To simplify the notation, let us agree to write ⟨v,w⟩ and ∥v∥ instead of ⟨v,w⟩gCg−1 and ∥v∥gCg−1 . Without
loss of generality, we may assume that t ≥ 1. Recall that ∥a∥2 =Q(a,a). Since

⟨vi , a⟩ =Q(vi , gCg
−1a) =Q(vi , a) = 0,

the second and third condition in the definition are trivially satisfied. For the first condition, note that for
every i = 1, . . . ,n− 1, at least one of the inequalities

∥a∥2 ≤ t∥vi∥2 or ∥vi∥2 ≤ t∥a∥2

will be true (because t ≥ 1). Consequently, there is some value of i ∈ {1, . . . ,n− 1} with the property that

∥vi∥2 ≤ t∥a∥2 and ∥a∥2 ≤ t∥vi+1∥2.

But this is saying exactly that our inner product is t-reduced relative to the ordered basis

v1, . . . , vi , a,vi+1, . . . , vn−1 ∈HQ
.

□
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4. Definable structures on flat bundles

4.1. Let X be a nonsingular complex algebraic variety, and let E be a locally free OX-module of finite rank
with a flat holomorphic connection ∇ : E →Ω1

X⊗OX E . We denote by p : E→ X the associated holomorphic
vector bundle. Recall that E is actually an algebraic vector bundle; the algebraic structure on E is uniquely
determined by the flat connection. Let us briefly review the construction. Choose an embedding X ↪→ Y
into a complete nonsingular variety, such that D = Y \X is a simple normal crossing divisor. Let (Ẽ ,∇) be
Deligne’s canonical extension of the pair (E ,∇); up to isomorphism, it is determined by the following two
conditions:

(1) Ẽ is a locally free OY -module with a flat logarithmic connection

∇ : Ẽ →Ω1
Y (logD)⊗OY Ẽ ,

such that (Ẽ ,∇)
∣∣∣
X
� (E ,∇).

(2) For each irreducible component Dj of the divisor D , the pointwise eigenvalues of the residue operator

ResDj ∇ ∈ End
(
Ẽ
∣∣∣
Dj

)
are complex numbers whose real part is contained in the interval [0,1).

The canonical extension has the following simple description in local coordinates. Let U � ∆n be an
open neighborhood of a point y ∈ Y , with local holomorphic coordinates t1, . . . , tn centered at y, such that
the divisor D ∩U is defined by the equation t1 · · · tk = 0. Let V be the fiber of the vector bundle Ẽ at the
point y. Then there is a unique holomorphic trivialization

Ẽ
∣∣∣
U
� OU ⊗C V

that restricts to the identity on V at the point y, such that the logarithmic connection takes the form

∇(1⊗ v) =
k∑
j=1

dtj
tj
⊗Rjv

for commuting operators R1, . . . ,Rk ∈ End(V ), all of whose eigenvalues have real part in [0,1); here Rj is
the residue operator along tj = 0. It is easy to see that

e−2πi
∑k
j=1 log tjRj (1⊗ v)

defines a multivalued flat section of (E ,∇) on U ∩X. The monodromy transformation around the divisor
tj = 0 is therefore described by the operator

e−2πiRj ∈GL(V ).

In particular, the following two conditions are equivalent:

(a) The eigenvalues of the local monodromy transformations around the components of D are complex
numbers of absolute value 1.

(b) For each irreducible component Dj of the divisor D , the pointwise eigenvalues of the residue operators
ResDj ∇ are real numbers.

Since Y is complete, the holomorphic vector bundle p : Ẽ→ Y associated to the locally free sheaf Ẽ has a
unique algebraic structure; the algebraic structure on the bundle E is obtained by restriction. As before, we
give Y and Ẽ the structure of Ran,exp-definable complex manifolds extending their algebraic structures; this
induces definable complex manifold structures on X and E. The former is the canonical algebraic definable
structure Xdef on X and we call the latter the algebraic definable structure on E. It is uniquely described as
that for which any holomorphic section s of p : Ẽ→ Y over an open subset U ′ ⊂ Y restricts to a definable
map on any definable U ⊂U ′ ∩X which has compact closure in U ′ .
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4.2. The holomorphic vector bundle E naturally comes equipped with another Ran,exp-definable structure
coming from the flat coordinates which we construct as follows. The subsheaf E ∇ ⊂ E of flat sections
is a complex local system. By definable triangulation, the definable topological space Xdef admits a
definable atlas {(Ui ,φi)} with each Ui simply connected. Choosing a basis of flat sections s1, . . . , sr of E

∇|Ui ,
we therefore obtain a holomorphic trivialization ψi : Ui ×Cr

�−→ p−1(Ui) via (u,z1, . . . , zr ) 7→
∑
i zisi(u).

Moreover, on intersections Uij := Ui ∩Uj the transition functions are constant: there are gij ∈ GLr(C)
such that ψi = ψj ◦ (id×gij ). The flat definable structure on E is then given by the definable complex
manifold atlas {(p−1(Ui), (φi × id)◦ψ−1i )}. It is uniquely characterized by the property that any flat section s
of p : E→ X over a definable open subset U ⊂ X is definable.

4.3. From now on, we assume that the local monodromy transformations around the components of D have
eigenvalues of absolute value 1; in this case we say that E has norm one eigenvalues at infinity. Under this
assumption, the two definable structures from the previous two paragraphs are equivalent.

Proposition 4.1 (cf. [BM22, Theorem 1.2]). Let X be a nonsingular complex algebraic variety and E a holomorphic
flat vector bundle over X with norm one eigenvalues at infinity in the above sense. Then the flat and algebraic
definable complex manifold structures on E are equivalent.

The idea of the proof can be seen from the construction of the Deligne canonical extension as above. An
algebraic frame for E extends to an algebraic frame for the canonical extension Ẽ on the compactification Y .
Thus, locally on the boundary it is related by a matrix of restricted analytic functions to a basis of sections of

the form e−2πi
∑k
j=1 log tjRj (1⊗ v). This basis is in turn related to the flat basis by the matrix e−2πi

∑k
j=1 log tjRj ,

which is Ran,exp-definable on bounded angular sectors. Indeed, the functions log tj are Ran,exp-definable on
bounded angular sectors in polydisk neighborhoods of the boundary in Xdef. If Rj = R

ss
j +Ruj is the Jordan

decomposition, then e−2πi
∑k
j=1 log tjR

u
j is polynomial in the log tj , while e

−2πi
∑k
j=1 log tjR

ss
j is Ran,exp-definable

since the Rssj are real.
In particular, we have the following concrete corollary, which we will use.

Corollary 4.2. Let Z be a complex manifold, and let f : Z → X be a holomorphic mapping that is moreover
Ran,exp-definable. Let σ ∈ Γ (Z,f ∗E ) be a holomorphic section with ∇σ = 0. Then the resulting function
σ : Z→ E is Ran,exp-definable with respect to the algebraic definable structure.

5. Proof of the main theorem

5.1. We now come to the proof of Theorem 1.1. Let X be a nonsingular complex algebraic variety, H a
polarized integral variation of Hodge structure on X, of even weight 2k. Fix a base point x0 ∈ X and let
H

Z
=H

Z,x0 ; this is a free Z-module of finite rank, which comes with a symmetric bilinear pairing

Q =Qx0 : HZ
⊗
Z
H

Z
→Z.

As usual, we set H
Q
= H

Z
⊗
Z
Q and H

R
= H

Z
⊗
Z
R; for simplicity, we shall use the notation C = Cx0 ∈

End(H
R
) for the Weil operator of the Hodge structure at the point x0. In particular,

(v,w) 7→ ⟨v,w⟩C =Q(v,Cw)

is a positive definite inner product on the vector space H
R
.

5.2. Let D be the period domain parametrizing integral Hodge structures of weight 2k on H
Z
that are

polarized by Q. Since the statement of Theorem 1.1 only involves the Weil operator (instead of the full Hodge
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structure), it makes sense to consider not the period domain D, but rather the associated symmetric space
(which is a quotient of D). Consider the Q-algebraic group

G =O(H
Q
,Q),

whose set of real points is the real Lie group

G(R) =
{
g ∈GL(H

R
)
∣∣∣Q(gv,gw) =Q(v,w) for all v,w ∈H

R

}
.

Recall that G(R) acts transitively on the period domain D, and that D = G(R)/V , where V ⊆ G(R) is the
stabilizer of the Hodge structure at x0. Clearly, the Weil operator satisfies C ∈ G(R) and C2 = id. It is easy
to see that

K =
{
g ∈ G(R)

∣∣∣ gC = Cg
}

is a maximal compact subgroup of G(R) containing the compact subgroup V ; by Lemma 3.1, the points
of the quotient G(R)/K can be identified with Weil operators for the pair (H

Q
,Q), with the coset gK

corresponding to the Weil operator gCg−1.

5.3. Consider now the arithmetic subgroup

(5.1) Γ =O(H
Z
,Q) = G(Q)∩GL(H

Z
).

Note that Γ is quite a bit larger than the monodromy group of the variation of Hodge structure; this will be
important in what follows. Instead of the usual period mapping to Γ \D, we consider the (Weil operator)
period mapping

(5.2) Φ : X→ Γ \G(R)/K

to the arithmetic quotient of the symmetric space G(R)/K . It associates to every point x ∈ X the Weil
operator Cx ∈ Aut(Ex), viewed as an automorphism of the fixed vector space H

C
by parallel transport; this

is well-defined in the quotient Γ \G(R)/K since Γ contains the monodromy group of the variation of Hodge
structure. According to [BKT20, Theorem 1.3], the mapping Φ in (5.2) is Ran,exp-definable. The main result
is stated for the usual period mapping into Γ \D , but what is actually proved in [BKT20, Theorem 4.1] is the
Ran,exp-definability of (5.2).

5.4. Let π : X̃→ X be the universal covering space of X. Since the period mapping is locally liftable, there
is a real-analytic mapping Φ̃ : X̃ → G(R)/K , unique up to a choice of base point, making the following
diagram commute:

X̃ G(R)/K

X Γ \G(R)/K

Φ̃

π

Φ

We now extend the definability result to the vector bundle p : E → X. On G(R)/K , consider the trivial
complex vector bundle G(R)/K ×H

C
, where H

C
=H

Z
⊗
Z
C. The arithmetic group Γ acts on this bundle

via the formula

γ · (gK,v) =
(
γgK,γ(v)

)
,

and the quotient gives us a “universal” complex vector bundle

Γ \
(
G(R)/K ×H

C

)
→ Γ \G(R)/K

with fiber H
C
. The pullback π∗E has a canonical trivialization by ∇-flat sections, hence π∗E � X̃ ×H

C
. The

trivial morphism of vector bundles

Φ̃ × id : X̃ ×H
C
→ G(R)/K ×H

C
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therefore descends to a morphism of complex vector bundles

E Γ \
(
G(R)/K ×H

C

)
X Γ \G(R)/K.

ΦE

p

Φ

Proposition 5.1. The morphism of complex vector bundles

ΦE : E→ Γ \
(
G(R)/K ×H

C

)
is Ran,exp-definable.

Proof. Let Y be a complete nonsingular variety containing X, such that X = Y \D for a simple normal
crossing divisor D . By the same argument as in [BKT20, § 4.1], the problem is local on Y , and so we
may assume that Y = ∆n, with holomorphic coordinates t1, . . . , tn, and that the divisor D is defined by the
equation t1 · · · tk = 0. Let H =

{
z ∈ C

∣∣∣ Imz > 0
}
and Σ =

{
z ∈H

∣∣∣ 0 ≤ Rez ≤ 1
}
. By [BKT20, Theorem 1.5],

there is a subalgebraic Siegel set S ⊆ G(R) for the maximal compact subgroup K , and a finite set A ⊆ G(Q),
such that the image of

Φ̃ : Σk ×∆n−k→ G(R)/K

is contained in A ·S. We get the following commutative diagram:

Σk ×∆n−k A ·S

H
k ×∆n−k G(R)/K

(∆∗)k ×∆n−k Γ \G(R)/K

Φ̃

π Φ̃

π

Φ

.

Now π : Σk ×∆n−k→ (∆∗)k ×∆n−k is Ran,exp-definable, and so Corollary 4.2 implies that the isomorphism
of complex vector bundles

π∗E � Σk ×∆n−k ×H
C

is actually Ran,exp-definable. Since the morphism of trivial bundles

Φ̃ × id : Σk ×∆n−k ×H
C
→ (A ·S)×H

C

is obviously Ran,exp-definable, we get the desired result. □

5.5. We are ready to prove a first definability result for self-dual vectors in a single Γ -orbit. Suppose that we
have an integral vector a ∈H

Z
such that Ca = a. We are interested in self-dual classes in the orbit Γ a ⊆H

Z
.

As noted after Lemma 3.1, points of the symmetric space G(R)/K correspond to Weil operators for (H
Q
,Q);

we identity a coset gK with the Weil operator Cg = gCg−1.

Proposition 5.2. Let a ∈H
Z
be a nonzero integral vector with Ca = a. The set{

Γ (gK,v) ∈ Γ \
(
G(R)/K ×H

C

) ∣∣∣ v ∈ Γ a and Cgv = v }
is Ralg-definable.

Proof. We introduce the additional subgroups

Ka = Ga(R)∩K and Γa = Ga(Q)∩ Γ .
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For the same reason as before, Ka is a maximal compact subgroup of Ga(R), and Γa is an arithmetic subgroup
of Ga(Q). Lemma 3.5 shows that the image of

Ga(R)/Ka ↪→ G(R)/K

consists of all cosets gK whose corresponding Weil operator Cg = gCg−1 satisfies Cga = a. According to
Proposition 3.6 and [BKT20, Theorem 1.2], the morphism of arithmetic quotients

Γa\Ga(R)/Ka→ Γ \G(R)/K

is Ralg-definable. This morphism has a well-defined lifting

i : Γa\Ga(R)/Ka→ Γ \
(
G(R)/K ×H

C

)
, ΓahKa 7→ Γ (hK,a),

which is Ralg-definable for the same reason. In more detail, let S be an arbitrary Siegel set in Ga(R) with
respect to the maximal compact subgroup Ka. The formula

ĩ : S→ G(R)/K ×H
C
, ĩ(h) = (hK,a)

gives us an Ralg-definable local lifting of i. Because of Proposition 3.6, the composition of ĩ with the
projection to Γ \(G(R)/K ×H

C
) is definable; it follows that the mapping i is itself Ralg-definable.

Now the image of i is exactly the set we are interested in. Indeed, suppose that Γ (gK,v) = Γ (hK,a) for
some g ∈ G(R), h ∈ Ga(R), and v ∈H

C
. Then there is an element γ ∈ Γ such that g = γh and v = γa, and

one easily deduces that v ∈ Γ a and Cgv = v. In fact, the mapping i is an embedding: if Γ (hK,a) = Γ (h′K,a)
for two elements h,h′ ∈ Ga(R), then there is some γ ∈ Γ and some k ∈ K such that h′ = γhk and γa = a; but
then γ ∈ Γa, and therefore k ∈ Ka, and so the double cosets Γah

′Ka = ΓahKa are equal. The locus of self-dual
classes in our given Γ -orbit is therefore an Ralg-definable subset that is isomorphic to the smaller arithmetic
quotient Γa\Ga(R)/Ka. □

5.6. We now extend the above result to integral vectors v ∈ H
Z

with a fixed self-intersection number
Q(v,v).

Proposition 5.3. Let q ∈N be a positive integer. Then the set{
Γ (gK,v) ∈ Γ \

(
G(R)/K ×H

C

) ∣∣∣ v ∈H
Z
, Q(v,v) = q, and Cgv = v

}
is Ralg-definable.

Proof. The crucial point is that Γ acts on the set
{
v ∈H

Z

∣∣∣Q(v,v) = q
}
with only finitely many orbits; this

makes the result a direct consequence of Proposition 5.2. The finiteness of the number of Γ -orbits follows
from [Kne02, Satz 30.2]; since Kneser works in much greater generality, let us briefly explain how to deduce
the statement we need. The quadratic form v 7→ Q(v,v) makes H

Z
into a lattice in the Q-vector space

H
Q
, and an integral vector v ∈ H

Z
with Q(v,v) = q defines an isometry v : [q]→ H

Z
, where [q] means

the lattice Z with the quadratic form n 7→ qn2. (Kneser calls this a “Darstellung” of [q] in H
Z
.) Now

[ℓ] is nondegenerate because ℓ ≥ 1, and [Kne02, Satz 30.2] guarantees that there are only finitely many
equivalence classes of such isometries. But since Γ = O(H

Z
,Q), two vectors v,v′ ∈ H

Z
are in the same

equivalence class, in the sense of [Kne02, Definition 30.1], exactly when there is an element γ ∈ Γ such that
v′ = γv. □

5.7. Finally, we assemble all the pieces and prove Theorem 1.1.

Proof of Theorem 1.1. The polarized integral variation of Hodge structure H on X gives rise to a kind of
period mapping

Φ : X→ Γ \G(R)/K



Finiteness for self-dual classes in integral variations of Hodge structure 21Finiteness for self-dual classes in integral variations of Hodge structure 21

that, up to the action by Γ , associates to every point x ∈ X the Weil operator Cx of the corresponding Hodge
structure. We already know that Φ is Ran,exp-definable [BKT20, Theorem 1.2]. We also have a morphism of
complex vector bundles

ΦE : E→ Γ \
(
G(R)/K ×H

C

)
from the algebraic vector bundle p : E→ X to the “universal” vector bundle on the right. We also know that
ΦE is Ran,exp-definable (by Proposition 5.1). The two morphisms fit into the following commutative diagram:

E Γ \
(
G(R)/K ×H

C

)
X Γ \G(R)/K.

ΦE

p

Φ

Fix a positive integer q ∈N. By Proposition 5.3, the set{
Γ (gK,v) ∈ Γ \

(
G(R)/K ×H

C

) ∣∣∣ v ∈H
Z
, Q(v,v) = q, and Cgv = v

}
is Ralg-definable, and so its preimage under ΦE is an Ran,exp-definable subset of E. Since it is easy to see
that a point (x,v) ∈ E lies in the preimage exactly when v ∈ Ex is integral and satisfies Qx(v,v) = q and
Cxv = v, we get the result. □

6. Additional results

6.1. In this section, we prove the two variants of the main theorem stated in the introduction. The idea is
simple enough: we tensor a given integral variation of Hodge structure by an auxiliary Hodge structure of
weight 1 or 2, and then apply Theorem 1.1. The first Hodge structure that we need is the following.

Example 6.1. Consider the Hodge structure on the first cohomology of the elliptic curve C/(Z ⊕Zi).
Concretely, this is an integral Hodge structure of weight 1 on the free Z-module Z

⊕2, whose Hodge
decomposition is given by

C
⊕2 =C(1, i)⊕C(1,−i).

The Hodge structure is polarized by the skew-symmetric bilinear form

Z
⊕2 ⊗Z⊕2→Z,

(
(a1, a2), (b1,b2)

)
7→ a1b2 − a2b1,

and the Weil operator is easily seen to be the operator (a1, a2) 7→ (a2,−a1); note that it happens to preserve
the integral structure in this case.

Now suppose that H is a polarized integral Hodge structure of odd weight 2k−1. Let Q : H
Z
⊗
Z
H

Z
→Z

be the skew-symmetric bilinear form giving the polarization, and let C ∈ End(H
R
) be the Weil operator

(which now satisfies C2 = − id). After taking the tensor product with the above Hodge structure of weight 1,
we obtain a polarized integral Hodge structure H̃ of weight 2k on

H̃
Z
=H

Z
⊕H

Z
,

polarized by the symmetric bilinear form Q̃
(
(a1, a2), (b1,b2)

)
=Q(a1,b2)−Q(a2,b1), and with Weil operator

C̃(a1, a2) = (Ca2,−Ca1). Evidently,

H̃+
2q =

{
(a1, a2) ∈HZ

⊕H
Z

∣∣∣ a1 = Ca2 and Q(a1, a2) = q
}
;

for polarized integral variations of Hodge structure of odd weight, Corollary 1.3 is therefore an immediate
consequence of Theorem 1.1.
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6.2. The remaining assertions concern variations of Hodge structure of even weight. We can deal with them
by the same method, using the following Hodge structure.

Example 6.2. Consider now the symmetric square of the Hodge structure in Example 6.1. Concretely, we get
an integral Hodge structure of weight 2 on the free Z-module Z

⊕3, whose Hodge decomposition is

C
⊕3 =C(1,2i,−1)⊕C(1,0,1)⊕C(1,−2i,−1).

The Hodge structure is polarized by the symmetric bilinear form

Z
⊕3 ⊗Z⊕3→Z,

(
(a1, a2, a3), (b1,b2,b3)

)
7→ a1b3 + a3b1 − a2b2,

and the Weil operator is easily seen to be the operator (a1, a2, a3) 7→ (a3,−a2, a1), which again preserves the
integral structure.

Suppose that H is a polarized integral Hodge structure of even weight 2k, with polarization Q : H
Z
⊗
Z

H
Z
→ Z and Weil operator C ∈ End(H

R
). After taking the tensor product with the Hodge structure in

Example 6.2, we obtain a polarized integral Hodge structure H̃ of weight 2k +2 on

H̃
Z
=H

Z
⊕H

Z
⊕H

Z
,

polarized by the symmetric bilinear form

Q̃
(
(a1, a2, a3), (b1,b2,b3)

)
=Q(a1,b3) +Q(a3,b1)−Q(a2,b2),

and with Weil operator C̃(a1, a2, a3) = (Ca3,−Ca2,Ca1). This time around,

H̃+
q =

{
(a1, a2, a3) ∈HZ

⊕H
Z
⊕H

Z

∣∣∣ a1 = Ca3, Ca2 = −a2, and 2Q(a1, a3)−Q(a2, a2) = q
}
.

We now obtain Corollary 1.3 for polarized integral variations of Hodge structure of even weight by looking at
triples of the form (a1,0, a3), and Corollary 1.2 by looking at triples of the form (0, a2,0).

7. Motivation from string theory

7.1. A motivation for studying the locus of self-dual integral Hodge classes stems from string theory.
String theory is a candidate theory of quantum gravity that unifies Einstein’s theory of general relativity
and quantum field theory. Quantum consistency forces the string to travel through a higher-dimensional
space-time manifold, extending beyond the four space-time dimensions that we currently observe in our
universe. In prominent variants of string theory this implies that either six or eight extra dimensions need to
be present. These extra dimensions are often considered to be on a tiny compact manifold. Particularly
well-studied choices are Calabi-Yau manifolds, which are defined to be Kähler manifolds that admit a
Ricci-flat metric. While it is not known which Calabi-Yau manifold one should pick, it has been studied
intensively how the physical four-dimensional theory can be determined after making a choice.

7.2. We now describe one example from physics that originally suggested the result in Theorem 1.1. Let Y
be a compact polarized Calabi-Yau manifold of complex dimension D, with D = 3,4 being the cases most
relevant in the string theory application. One can associate a family of manifolds Yt to Y that is obtained by
deforming its complex structure. It is shown by the Bogomolov-Tian-Todorov theorem [Tia87, Tod89] that
the Kuranishi space of Y is unobstructed. Hence Yt varies over a finite-dimensional moduli spaceM if one
demands that all Yt are Calabi-Yau manifolds. For polarized Calabi-Yau manifolds of complex dimension D
the moduli spaceM is quasi-projective [Vie95] and of complex dimension hD−1,1 = dimHD−1,1(Y ). The
existence of such a moduli space leads to several physical problems when using such Yt as backgrounds
of string theory. In particular, one finds modifications of Newton’s law or Einstein’s equations that are
in contradiction with observations. To avoid this immediate conclusion further ingredients known as
background fluxes can be introduced. These fluxes are integral classes in the cohomology of Y . Compared
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with the general considerations above, we thus identify X = M̂, where M̂ is the resolution ofM [Hir64].
Furthermore, we set H

Z
=HD(Y ,Z) and Q =

∫
Y
v ∧w. Introducing a Weil operator C acting on Hp,q(Yt)

with ip−q, we define a norm ∥w∥2 =Q(w̄,Cw).

7.3. The best understood string theory settings with integral fluxes are obtained from Type IIB string
theory [GVW00, GKP02]. Let us consider this ten-dimensional theory on a Calabi-Yau manifold Y of
complex dimension three. In this string theory setting one is also free to chose in addition to Y two
integral three-forms F,H ∈H3(Y ,Z), which set the flux background. They naturally combine to a complex
three-form G = F − τH with τ ∈C. The fluxes F,H are constrained by a consistency condition

(7.1) Q(F,H) = ℓ ,

where ℓ is a fixed positive rational number that can be derived for a given setting. This condition is known
as a tadpole cancellation condition and plays a crucial role in finding consistent solutions of string theory.
Furthermore, the presence of G impacts the physical four-dimensional theory by giving rise to an energy
potential V (G), which generally changes for different choices Yt within the family. Concretely, it takes the
form [GKP02]

(7.2) V (G) = κ∥G−∥2 ,

where CG− = −iG− and κ is τ-dependent but constant overM. The loci inM that minimize this energy
potential with G− = 0 have been shown to be consistent background solutions of Type IIB string theory
[GKP02]. It has been a long-standing question of whether or not the number of distinct H,F with G− = 0
and (7.1) is finite.

7.4. A more general setting that leads to a similar question arises in a geometric higher-dimensional
version of Type IIB string theory known as F-theory [Vaf96, Den08]. In F-theory the extra dimensions are
constrained to reside on an eight-dimensional compact manifold to extract a four-dimensional physical
theory. The consistency equations for such twelve-dimensional string backgrounds admit solutions that are
(conformal) Calabi-Yau manifolds Y of complex dimension D = 4 that admit a four-form flux background.
Let us consider v ∈H4(Y ,Z) and assume that v is primitive with respect to the Kähler form J of Y . The
condition (7.1) generalizes to Q(v,v) = ℓ, which is the consistency condition every solution to F-theory with
a compact Y has to satisfy. A non-trivial v induces again an energy potential

(7.3) V (v) = λ∥v−∥2 ,

where Cv− = −v− and λ is a constant. V (v) changes in the family Yt and hence is a function on the moduli
space M. The self-dual loci in M are by definition those that satisfy Cv = v and hence minimize V (v).
They comprise consistent solutions to F-theory and are of central interest to some of the most prominent
scenarios on realizing our four-dimensional universe in string theory. Each choice of v satisfying these
consistency conditions can imply different values for physical observables. It is thus of profound importance
to know if there are infinitely many choices for v.

7.5. Finiteness statements about the set of self-dual v ∈H4(Y ,Z) with Q(v,v) = ℓ have been conjectured in
[Dou03, AD06]. In order to provide evidence for these statements and to estimate the number of distinct
solutions it was suggested in [AD04, DD04] to introduce a critical point density on the moduli space.
Mathematically rigorous proofs on estimating this density were given in [DSZ04, DSZ06a, DSZ06b]. Strong
finiteness results have been shown in [DL06, DL13] for a certain index counting solutions to the self-duality
relations for Calabi-Yau manifolds by applying a Gauss-Bonnet-Chern theorem on the moduli space. In
this work we have given an affirmative answer to the finiteness conjectures without using a density function.
We have also shown that in the complex structure moduli space there is no need to introduce a refined
notion of physically distinct vacua to ensure finiteness as suggested in [AD06]. The finiteness statement is
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centrally based on the definability of the period mapping which suffices to exclude the pathological examples
discussed in [AD06]. In dimension 1, it is possible to prove Theorem 1.1 along the lines of [CDK95], by using
more details about the SL(2)-orbit theorem [Sch20], see also [Gri21] for a sketch of the argument. In higher
dimensions, this kind of argument looks completely infeasible.
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